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Processor Introduction 
Our processor is based on an accumulator-type architecture, taking advantage of the simplicity of only 
using one main register to store computation results and data extracted from memory. Complementing 
this main register are four specialty data registers, used to store data outputs from memory, 
computation results from the ALU, a stack pointer, and a program counter. We used a minimalist design 
philosophy focused on simple programming and avoidance of superfluous instructions, making it as 
easy as possible for the programmer to use the processor and its instruction set. This manifested into a 
simple instruction set with only common and necessary instructions for programs, which resulted in 
only 13 instructions and 5 instruction types. We also applied this philosophy to our performance 
metrics, not only measuring our performance in terms of execution time, but also with regards to the 
simplicity of the instruction set, allowing the programmer to save time while programming and 
structuring code segments and procedures. 

I/O 
Our processor handles input by storing the input value into the main register, and then storing that value 
in memory in one of the dedicated argument slots to use in the future if need be. Output is taken straight 
from the main operating register, so all relevant data must be in the main register if the programmer 
desires to get or use that data elsewhere, including as a return value of a procedure. 

RISC-V Differences 
 

Jal Jal utilizes direct addressing in this 
architecture. It has a 13-bit range, 
which covers more destination 
addresses than necessary since the 
processor memory only has 10-bit 
addressing. 

Push/Pop Push and pop are unique commands 
to our architecture that are used to 
store return addresses on the stack. 
They are used in conjunction to 
automatically update PC and SP, 
which prevents programmers from 
having to manually calculate SP 
adjustments to implement in their 
code. 



ZE vs SE Our Immediate Genie solely uses zero 
extension, whereas RISC-V primarily 
uses sign extension. 

 

Core Instruction Format 
R-Type  

10 bits [15:6]  3 bits [5:3]  3 bits [2:0]  

Memory Address (Addr)  Func3  OP Code  

  

C-Type  

2 bits 

[15:14]  

8 bits [13:6]  3 bits [5:3]  3 bits [2:0]  

Address of 

Compared 

Value  

PC-Relative Destination Address (Addr)  Func3  OP Code  

  

J-Type  

10 bits [15:6]  3 bits [5:3]  3 bits [2:0]  

Direct Address (Addr)  Func3  OP Code  

  

I-Type  

10 bits [15:6]  3 bits [5:3]  3 bits [2:0]  

Immediate  Func3  OP Code   

  

  P-Type  

10 bits [15:6]  3 bits [5:3]  3 bits [2:0]  

-----  Func3  OP Code  

 

 

 

 

 

 



Example code for common use cases 
Loads a value from address 8 and stores it at address 10 

 0x0050: lw 8 

0x0052:   sw 10 

Adds 1 forever onto the register 

 0x0040:   addi 1 

0x0042:   jal 64 

Stores 2 at address 2 and compares address 2 with register to branch 

 0x0040:   addi 2 

0x0042:   sw 2 

0x0044:   add 2 

0x0046:   bne 2 2 

0x0048:   subi 1 (does not run) 

0x004A:   sub 2 

 

 

 

 

 

 

 

 

 

 

 

 

 



Instruction RTL 
 

Add/Sub Load/Store C-Type J-Type 

IR = Mem[PC] 

PC = PC + 2 

IR = Mem[PC] 

PC = PC + 2 

IR = Mem[PC] 

PC = PC + 2 

IR = Mem[PC] 

PC = PC + 2 

B = ZE[IR[15:6]] 

A = 0 

OUT = A + B 

B = ZE[IR[15:6]] 

A = 0 

OUT = A + B 

B = ZE[IR[15:6]] 

A = 0 

OUT = A + B 

B = ZE[IR[15:6]] 

A = 0 

OUT = A + B 

MDR = Mem[OUT] Load: 

Reg = Mem[OUT] 

Store: 

Mem[OUT] = Reg 

A = 0 

B = 2 

OUT = A + B 

PC = OUT; 

B = MDR 

A = Reg 

Reg = A op B 

 

 MDR = Mem[OUT] 

Out = PC + 

ZE[IR[13:6]] 

 

  B = MDR 

A = Reg 

 

*ALU Compares 

MDR and Reg to see if 

branch* 

 

  *If compare is 

successful, alter PC* 

A = PC 

B = ZE [ IR[13:6] ] 

PC = A + B 

 

I-Type Push Pop  

IR = Mem[PC] 

PC = PC + 2 

IR = Mem[PC] 

PC = PC + 2 

IR = Mem[PC] 

PC = PC + 2 

 

B = ZE[IR[15:6]] 

A = 0 

OUT = A + B 

B = ZE[IR[15:6]] 

A = 0 

OUT = A + B 

B = ZE[IR[15:6]] 

A = 0 

OUT = A + B 

 

B = ZE[IR[15:6]] 

A = Reg 

Reg = A op B 

A = PC 

B = 2 

OUT = A + B 

A = SP 

B = 2 

SP= A + B 

 

 Mem[SP] = OUT PC = Mem[SP]  

 A = SP 

B = 2 

SP = A - B 

  

  



Components with Respective Testbenches 
Path for all: rhit-csse232-2324b-project-gole-2324b-01/implementation/<filename_here> 

Memory: Memory.v | Memory_TB.v 

Memory Wrapper: Memory_Wrapper.v  

Control Unit: ControlUnit.v 

ALU: ALU.v | ALU_TB.v 

Immediate Genie: Immediate_Genie.v | Immediate_Genie_TB.v 

Main Register: Register.v | Register_TB.v 

Instruction Register: IR.v | Register_TB.v 

Out Register: RegisterOUT.v | Register_TB.v 

PC Register: RegisterPC.v | Register_TB.v 

SP Register: RegisterSP.v | Register_TB.v 

MDR Register: RegisterMDE.v | Register_TB.v  



Testing Approach 
When testing each component, and the full data path itself, we opted for fully implementing one 
component at a time. We decided to implement the Register component first since they require the 
least effort to create. Most registers differ from one another due to various muxes feeding differing data 
into each, so we broke registers into separate components based on intended usage. Once the data 
input to the register, routed through each mux with varying sources, was implemented we tested to see 
if each possible input would correctly alter the register data. We also tested to make sure that data in 
the register was only altered if the respective write control bit was 1 to ensure that we could control data 
changes with a high degree of accuracy. 

Next, we implemented the immediate genie which consisted of selecting various bits depending on the 
opcode in the instruction, or in other words, the first 6 bits of the instruction. The immediate genie was 
not very complicated to implement and therefore testing was a simple check to see if the correct bits 
were being selected by the component. 

After the immediate genie, we moved onto working on the ALU. The ALU involved connecting two 
different muxes with a wide range of respective inputs and making sure the output of the ALU correctly 
performed specified arithmetic operations, i.e. addition or subtraction. Once created, we tested the 
ALU to ensure that each possible set of inputs to the source muxes could be selected. Then, we tested a 
variety of arithmetic operations by adding and subtracting various inputs and manually computing the 
correct output to cross-reference the ALU result. 

The final component we implemented was memory. Memory was tested using the PC register since it 
was needed to select specific addresses within memory. Furthermore, memory has an input mux before 
it that selects the source to the memory input from either a data line or an address line in the case of 
MemRead vs MemWrite, so we ensured that this mux behavior was implemented first. Testing this 
component itself involved observing that the output of the mux matched the correct input line into 
memory. Memory testing was a little more complicated since we had to test storing a new value at a 
specific memory location as well. To test this, we used Model Sim and opened the memory analysis tab 
to manually verify that the correct addresses in memory were being altered. 

Finally, once all components were fully tested and completed, we linked them together and created our 
final data path. To be fully confident in our data path, we had to test every single instruction we created. 
We decided to implement and test instructions based on their type, making this a depth-first 
implementation. For example, we tested addi and subi first (I-types) before moving onto the next type, 
R-types. We repeated this testing process for each type, making necessary changes throughout until we 
were satisfied with all instructions. Once all instructions were tested and completed, we ran a full-scale 
test that utilized all instructions multiple times to see if it would output the correct values. Once this 
test ran successfully, the data path and all components were correctly implemented and ready for 
programmer use. 

 



Datapath Diagram 
 

 

 

Each instruction cycle begins with the fetch at PC, from there the processor is able to complete all 
operations. All control bits and paths are as labeled above, and support a full range of basic processor 
operations.   



State Machine Diagram 

 

SPWrite: Writes to SP when the signal is 1 MemIn: Selects between PC, OUT, and SP as the 
input address for Memory  

MemWrite: Writes to Memory when the signal is 1 A: Selects between REG, PC, 0, and SP as the first 
ALU input value 

IRWrite: Writes to IR when the signal is 1 B: Selects between 2, Immediate Genie, and MDR as 
the second ALU input value 

OutWrite: Writes to OUT when the signal is 1 PCSource: Selects between OUT, the ALU output, 
and Memory output as the input for the PC value 

PCWrite: Writes to PC when the signal is 1 IsBranch: Gets set to 1 when ready to potentially 
branch, as isBranch AND signage are required to 
write to PC 

RegWrite: Writes to REG when the signal is 1 ALUOp: Determines between addition or subtraction 
as the operation the ALU completes 

DataSRC: Selects between REG and OUT as the data 
input source for Memory 

BranchOp: Selects between a BEQ, BGE, BLT, and 
BNE branch-type  

RegSource: Selects between the ALU output and 
Memory as the input source for REG 

 



Integration Plan and Component Description 
Our integration plan was a depth first approach, choosing to get one full instruction working and then 
build off that to implement the remaining instructions and instruction-types. We began with ADDI, as it 
seemed to be easiest as we just had to read an immediate input and add that with the value already in 
the register. Initially, the plan was to create the data path based on our diagram in this document, but 
only focusing on components needed for addi (some registers like MDR and SP are not needed for addi). 
This file was called Addi, with its testbench being Addi_TB. Since we believed our components were 
complete at this point, we only had to test that they were connected correctly in Addi, and we did this by 
utilizing a memory.txt file that contained an instruction for different addi calls in hex format.  For 
example, one line would add 1, but further lines would add 2,3,4, etc. Once this worked, we moved onto 
subi, since it was another I-Type and quickly realized that it was already implemented correctly using 
the same components that had already been connected in the data path. 

Initially, we decided to make different files for each instruction and combine them at the very end. 
However, after completing addi, we decided to us Addi.v as our main data path file and implement all 
instructions within this file. We then implemented each instruction type sequentially before moving 
onto the next, until all planned instructions had been implemented. We were then ready to add an input 
and output wire so users could run a procedure with specific values (arguments) they desired. We 
decided to make another component to separate these two wires, letting them change when needed, 
called OutputPort. We connected the input wire to the register so that it could be stored at a memory 
address using the instruction “sw.” The output wire would be directly connected to the main register as 
well so that whatever value was contained in the register at the end would display as the output as well. 

After implementing the OutputPort file and connecting it to the other components in Addi, we were able 
to test relPrime and GCD in a testbench file that we named complete_datapath_tb. To do this, we first 
implemented all instructions needed in the memory.txt file so that it could run properly. This was done 
by writing our program in our assembly code and translating into hex format using our assembler. Next, 
we tested various input arguments ranging from 3 to 5040 to see if they would output correct values. All 
values portrayed the correct output confirming that we’d fully implemented the data path correctly and 
the implementation plan was finished.  



Addressing Modes 
Our processor uses direct addressing along with zero extension to perform our sole J-type instruction, 
JAL. This offers a wide range of addresses to jump to but requires the programmer to know the exact 
address of their destination as it gives them full control over this field. We also use PC-relative 
addressing along with zero extension to perform all C-type instructions, which combined with our eight 
bit branch input in C-type instructions allows for a wide range of addresses that the programmer can 
select and branch to.  

Procedure Calling Convention 
When calling another procedure/function with our instruction set, there are a few guidelines to ensure 
that everything executes correctly and achieves the desired outcome of the programmer. First, the 
PUSH instruction is used to put the PC on the stack. Next, the JAL instruction is called, which will jump 
to the desired instruction by setting PC to the desired address. The called procedure is then required to 
have the POP instruction as its last instruction, as this will go onto the stack, set PC to the previously 
stored value, and then increment the stack pointer. This PC value, during the PUSH instruction, is 
automatically set to the address after the JAL instruction, so it always goes to the right place in the 
code. 

Memory Map 
Our memory layout includes a hardcoded 0 value at the address 0x0000, a comparison argument for 
what C-types compare to at address 0x0002, general arguments and data storage that range from 
addresses 0x0004 to 0x003E, our text and beginning of where the instructions start at 0x0040, and 
finally our stack which starts at the “top” of memory at address 0x0400. 

0x0400 Stack  

|  

|  

|  

˅  

Dynamic Data  

0x0040                            Text 

0x0004 – 0x003E       Arguments 

0x0002           Immediate Value (Comparisons) 

0x0000                          0 Value 



 

Green Sheet 
Base Integer Instructions 

Inst Name FMT funct3 Opcode Description 

add ADD R 000 000 R = R + mem[ ZE(mem_addr) ] 

sub SUB R 001 000 R = R – mem[  ZE(mem_addr)] 

lw Load Word R 010 000 R = mem[ ZE(mem_addr) ] 

sw Store Word R 011 000 mem[ ZE(mem_addr) ]= R 

beq Branch == C 000 001 if(R == 

mem[ZE(compare_addr)]) 

PC = PC + New Address 

bne Branch != C 001 001 if(R!= mem[ZE(compare_addr)]) 

PC = PC + New Address 

blt Branch < C 010 001 if(R < mem[ZE(compare_addr)]) 

PC = PC + New Address 

bge Branch >= C 011 001 if(R >= 

mem[ZE(compare_addr)]) 

PC = PC + New Address 

jal Jump and Link J 000 011 PC = newAddr 

addi ADD Immediate I 000 010 R = R + imm 

subi SUB Immediate I 001 010 R = R - imm 

push Pushes an address P 000 100 PC = PC + 4 

Mem[SP] = PC 

SP = SP – 2 

pop Pops an address P 001 100 SP = SP + 2 

PC = SP[Address] 

 

 

 



Core Instruction Format 

15                 13   12                  6  5             3  2           0 

Memory Address Func3 Opcode R-Type 
Immediate Func3 Opcode I-Type 

------ Func3 Opcode P-Type 
Direct Address Func3 Opcode J-Type 

Comp Addr PC-Relative Destination 
Address 

Func3 Opcode C-Type 

 



Unique Features 
One of our unique features is our automatic PUSH and POP instructions. They are as simple to 

use as writing PUSH and POP, as the rest is automatically taken care of by the control unit. PUSH 
automatically pushes the PC onto the stack and decrements SP down to the next open memory slot. 
This makes it easy to store the return address of the program counter when using JAL, so that POP can 
be performed, which takes the value stored at SP, sets PC to it, and increments SP up to the next value 
stored on the stack.  

Another unique feature is the use of the memory address 0x0002 as the comparison address for 
the C-type instructions. It requires the user to put whatever they want to compare REG to in that slot, 
but due to the minimal number of bits required to represent the address in binary and in the subsequent 
machine code, it allows for a wide range of addresses to branch to at eight bits. This allows for larger 
programs to be written that utilize a larger range of branch addresses. It also is no extra cost in the 
Datapath, as the B mux already has the value 2 hardcoded to one of its inputs for PC incrementing, so 
adding 0 and 2 to get the address 0x0002 is low-cost and routing this result to the MemIn mux to access 
that address in memory is a similarly inexpensive individual operation.  



Extra Features 
 

Assembler 

For an extra feature we created an instruction assembler in java which can either take manual input 
from a user and output the respective binary and hex for that instruction or read from a txt file local to 
the users machine, parse the file, and then print all instructions from that file. Below are some 
screenshots from the assembler and example outputs to the console. 

Manual Input 

   

At the top of file one can specify if they want manual input or txt file input by switching a Boolean labeled 
“manual” to either true or false. If the Boolean is set to true, an example of the assembler process can 
be seen above. 

Read From txt File 

 

If the Boolean is set to false, the user can specify the file path to the txt file on their machine and the 
block of code above will run. Below are some examples of input from a txt file and the output to the 
console. 



    

The assembler will first print all instructions in binary, then print all instructions in hex with some clever 
padding of “0000” lines to make copy and pasting into testing software much easier, then print all labels 
mapped to their address in the file for easy debugging and code writing. 

A more detailed and in-depth description of the code base and instructions on how to use the 
assembler can be found in the appendix of this document and the Gold-2324b-01 implementation 
repository linked as a PDF document. 

 

  



Benchmark Data 
Total Bytes: 90 

Total # Instructions: 116,585 

Total # Cycles: 418,704 

Average CPI: 3.58 

Cycle Time: 11.6ns 

Execution Time: .004856 seconds 

Total Logic Elements: 19,992 (90%) 

Total # Registers: 16,503 

Total Memory Bits: 0 

Our results are within the expected range that we were hoping to be in. They are competitive with what 
we were hoping to achieve and support our design philosophy and ideology. The CPI is slightly higher 
than we’d initially designed for, but the Cycle Time and Execution Time of the RelPrime program are well 
within our design targets.  



Conclusion  
Ultimately our accumulator-based architecture process was successful in terms of all established 
metrics, including the ability to execute all desired instructions, run in a timely manner with a 
competitive execution time, and achieving a primary design philosophy of keeping a simplified 
instruction set to make the programming simple using this processor. The design process saw some 
slight change and variation from the original planned instruction set, adding P-Type instructions, and 
adjusting various control bits and details to work with our RTL, Datapath, and Control Unit. Our 
processor uses a Multi-Cycle Datapath (represented by our Multi-Cycle RTL) to reduce hardware cost 
and volume and maintain efficient functionality within each cycle. This, combined with our Control Unit 
makes it easy to determine what is happening in each step, which helped us simplify our Control Unit 
and RTL. Our implementation avoided any major issues that would’ve required significant 
reconstruction and reconsideration of our processor, but we did have to revise our instruction set, RTL, 
Datapath, and Control Unit up until the final implementation to adapt to small roadblocks and errors 
that we encountered along the way. We are ecstatic with the final processor and what it can 
accomplish, as well as the dedication and teamwork from each member to produce a refined final 
product that meets and even exceeds our target expectations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 
A more robust set of instructions for the assembler as well as an in-depth code base description 
can be found at the following link or in the Gold-2324b-01 implementation repository linked as a 
PDF document. 

AssemblerInstructions.pdf 

 

 

file:///C:/Users/watsonlm/Desktop/rhit-csse232-2324b-project-gold-2324b-01/implementation/AssemblerInstructions.pdf

